#WEUNITUS

General Info

SUBJECTSEMESTERCFUSSDLANGUAGE
119413 - FUNDAMENTALS OF DIGITAL ENGINEERING APPLIED TO AGRICULTURE - 12- -

Learning objectives

Knowledge and understanding
Students will gain a solid understanding of the fundamentals of programming in Python and the basics of mechatronics and the Internet of Things (IoT). They will be able to understand and explain the theoretical principles governing the integration of mechanical, electronic and software components for applications in agriculture and beyond.

Applying knowledge and understanding
Students will be able to apply their acquired skills in Python programming to develop practical mechatronics projects using Raspberry Pi. They will be able to design, implement and test digital solutions that combine sensors, actuators and communication modules, with a focus on agricultural applications.

Making judgements
Students will develop the ability to critically analyze proposed solutions to specific digital engineering problems applied to agriculture. They will be able to evaluate the effectiveness of their mechatronic and IoT solutions by considering various technical factors and make autonomous decisions regarding the most appropriate implementations.

Communication skills
Students will be able to effectively communicate the results of their projects, both orally and in writing, using appropriate technical language. They will be able to document and present their work clearly and coherently, making the technological solutions adopted and the results obtained understandable even to non-specialists.

Learning skills
Students will develop the ability to independently learn new techniques and tools in programming, mechatronics and IoT. They will be able to continuously update themselves, successfully tackling new technological and application challenges, thanks to a solid methodological and practical foundation.

MODULE IIFirst Semester6ING-IND/12ita

Learning objectives

The objective of the "SENSOR" module of the Fundamentals of digital engineering applied to agriculture course is to provide the student with full knowledge of both the correct metrological language and the functioning of the main measuring instruments for digital agriculture applications. The sensors will be analyzed both considering the design process and the operating principle.
The expected results according to the Dublin descriptors are the following:

Knowledge and understanding
Know the definitions of the static and dynamic meter characteristics, know the definitions of the units of measure, understand the meaning of probability distribution linked to the measure in order to be able to define the extended uncertainty, understand the concept of sampling and analog-digital conversion, includes the operation of a measuring instrument for the electrical evaluation of mechanical and thermal quantities and in digital agriculture applications.

Ability to apply correct knowledge and understanding
Having an understanding of the scientific approach in the field of measurements. Have the ability to independently carry out a calibration and associate the correct uncertainty in the function of the instruments used. Understanding the significance of the results through applied statistics. Have the ability to carry out a dynamic study of first and second order measuring instruments.

Judgment skills
The student will be able to evaluate the sensors most suitable for a given use and will be able to select the correct application in the world of agriculture.

Communication skills
The student will acquire the skills to be able to argue the metrological concepts and uncertainty in the exam, as well as the operating principle of sensors and the importance of the world of measurements in the agricultural field.

Learning skills
The student will acquire the skills to be able to independently deepen the study of advanced sensors or the use of such as artificial intelligence, in addition to the basic ones seen above.

MODULE IIFirst Semester6ING-IND/31ita

Learning objectives

Knowledge and understanding
Students will gain a solid understanding of the fundamentals of programming in Python and the basics of mechatronics and the Internet of Things (IoT). They will be able to understand and explain the theoretical principles governing the integration of mechanical, electronic and software components for applications in agriculture and beyond.

Applying knowledge and understanding
Students will be able to apply their acquired skills in Python programming to develop practical mechatronics projects using Raspberry Pi. They will be able to design, implement and test digital solutions that combine sensors, actuators and communication modules, with a focus on agricultural applications.

Making judgements
Students will develop the ability to critically analyze proposed solutions to specific digital engineering problems applied to agriculture. They will be able to evaluate the effectiveness of their mechatronic and IoT solutions by considering various technical factors and make autonomous decisions regarding the most appropriate implementations.

Communication skills
Students will be able to effectively communicate the results of their projects, both orally and in writing, using appropriate technical language. They will be able to document and present their work clearly and coherently, making the technological solutions adopted and the results obtained understandable even to non-specialists.

Learning skills
Students will develop the ability to independently learn new techniques and tools in programming, mechatronics and IoT. They will be able to continuously update themselves, successfully tackling new technological and application challenges, thanks to a solid methodological and practical foundation.

119466 - INNOVATION IN THE MANAGEMENT OF PHYTOSANITARY ISSUES - 6- -

Learning objectives

The aim of the course is to provide the basis for learning how to assess and monitor pest (entomology module) and pathogen (pathology module) risks using advanced techniques, including monitoring and forecasting systems, and innovative diagnostic tools. At the end of the course, students will be able to develop innovative and sustainable pest management strategies, integrating biological, chemical and cultural techniques. They will acquire skills in the use of advanced technologies to improve the effectiveness and efficiency of plant health practices and develop communication skills to effectively transfer knowledge and innovations in plant health to different stakeholders, including farmers, technicians and land managers.

Knowledge and understanding
Demonstrate a thorough knowledge of the theories and principles governing plant health issues and the innovative solutions available to manage them.

Applying knowledge and understanding
Apply theoretical and methodological knowledge to the diagnosis and management of concrete phytosanitary problems, using advanced technological tools.

Making judgements
Make autonomous and critical judgements regarding different options for the management of plant health problems, taking into account practical, economic and environmental implications.

Communication skills
Use the correct technical-scientific terminology when describing course topics. Ability to synthesize and communicate effectively to specialists and non-specialists.

Learning skills
Demonstrate the ability to learn independently and continuously, keeping abreast of the latest innovations and developments in the field of pest management.

MODULE IIFirst Semester3AGR/11ita

Learning objectives

The aim of the course is to provide the basis for learning how to assess and monitor pest (entomology module) and pathogen (pathology module) risks using advanced techniques, including monitoring and forecasting systems, and innovative diagnostic tools. At the end of the course, students will be able to develop innovative and sustainable pest management strategies, integrating biological, chemical and cultural techniques. They will acquire skills in the use of advanced technologies to improve the effectiveness and efficiency of plant health practices and develop communication skills to effectively transfer knowledge and innovations in plant health to different stakeholders, including farmers, technicians and land managers.

Knowledge and understanding
Demonstrate a thorough knowledge of the theories and principles governing plant health issues and the innovative solutions available to manage them.

Applying knowledge and understanding
Apply theoretical and methodological knowledge to the diagnosis and management of concrete phytosanitary problems, using advanced technological tools.

Making judgements
Make autonomous and critical judgements regarding different options for the management of plant health problems, taking into account practical, economic and environmental implications.

Communication skills
Use the correct technical-scientific terminology when describing course topics. Ability to synthesize and communicate effectively to specialists and non-specialists.

Learning skills
Demonstrate the ability to learn independently and continuously, keeping abreast of the latest innovations and developments in the field of pest management.

MODULE IIFirst Semester3AGR/12ita

Learning objectives

The aim of the course is to provide the basis for learning how to assess and monitor pest (entomology module) and pathogen (pathology module) risks using advanced techniques, including monitoring and forecasting systems, and innovative diagnostic tools. At the end of the course, students will be able to develop innovative and sustainable pest management strategies, integrating biological, chemical and cultural techniques. They will acquire skills in the use of advanced technologies to improve the effectiveness and efficiency of plant health practices and develop communication skills to effectively transfer knowledge and innovations in plant health to different stakeholders, including farmers, technicians and land managers.

Knowledge and understanding
Demonstrate a thorough knowledge of the theories and principles governing plant health issues and the innovative solutions available to manage them.

Applying knowledge and understanding
Apply theoretical and methodological knowledge to the diagnosis and management of concrete phytosanitary problems, using advanced technological tools.

Making judgements
Make autonomous and critical judgements regarding different options for the management of plant health problems, taking into account practical, economic and environmental implications.

Communication skills
Use the correct technical-scientific terminology when describing course topics. Ability to synthesize and communicate effectively to specialists and non-specialists.

Learning skills
Demonstrate the ability to learn independently and continuously, keeping abreast of the latest innovations and developments in the field of pest management.

120463 - . - 13- -

Learning objectives

The learning objectives of teaching Digital Applications in foothill arboriculture are to provide the student with the ability to use digital tools and technologies for monitoring analysis and management of fruit tree systems and for the application of precision agronomic techniques in the field with regard to fruit trees from the foothill environment.
The course also intends to provide students with the ability to identify the most appropriate level of digitization applicable to the different types of orchard farms, together with an in-depth exploration of the different plant shapes used in fruit tree systems, with the aim of calibrating the applications of fruit farming 4.0 to the type of planting and plant shapes used in the orchard. The objectives described above are also pursued through the exploration of appropriate case studies.

Knowledge and understanding skills
The teaching aims to develop students' knowledge and understanding skills, such as:
• knowing and understanding what technologies are useful in monitoring tree systems for precision agronomic applications such as remote sensing and digital soil mapping to quantitatively estimate variables of agronomic interest in vegetation and soil;
• know and understand the digital techniques and technologies that can be used to analyze the spatial and temporal variability of the orchard;
• to know and understand the development and application of precision agronomic techniques and decision support systems for plant fruit systems.

Applied knowledge and understanding
The teaching will enable the application of knowledge and understanding, allowing the student to:
• know and use the main multispectral satellite systems suitable for precision agriculture through the use of cloud-based platforms for analyzing the temporal and spatial variability of fruit-growing plots;
• know and use techniques for estimating vegetation and soil biophysical variables from satellite data and through the use of proximal sensing for monitoring fruit crops;
• to know the techniques and technologies available for digital applications in the management of cultivation operations in the orchard, also exploring the opportunities for using drones and agribots for the automatic execution of cultivation operations.

Autonomy of judgement
Teaching will allow the development of autonomy of judgement at various levels, such as:
• hypothesize which soil and climate properties influence the spatial and temporal variability of fruit tree crops;
• propose the most suitable precision management agro-techniques for efficient and sustainable management of fruit tree crops.

Communication skills
Participation in the lectures and use of the teaching materials made available will facilitate the development and application of communication skills, such as:
• provide an exhaustive range of practical examples of the application of precision agronomic techniques to fruit tree crops;
• using an appropriate and up-to-date technical agronomic vocabulary in line with fruit growing 4.0.

Learning skills
Participating in lessons and making independent use of the material made available will facilitate the consolidation of one's learning skills, such as:
• activate a programme of continuous updating of one's knowledge;
• autonomously identify ways of acquiring information by consulting bibliographic databases at various levels (peer-reviewed journals, popular journals, conference proceedings, websites, etc.);
• identify and use the most useful sources of information for personal updating.

MODULE IIFirst Semester6AGR/03ita

Learning objectives

The learning objectives of teaching Digital Applications in foothill arboriculture are to provide the student with the ability to use digital tools and technologies for monitoring analysis and management of fruit tree systems and for the application of precision agronomic techniques in the field with regard to fruit trees from the foothill environment.
The course also intends to provide students with the ability to identify the most appropriate level of digitization applicable to the different types of orchard farms, together with an in-depth exploration of the different plant shapes used in fruit tree systems, with the aim of calibrating the applications of fruit farming 4.0 to the type of planting and plant shapes used in the orchard. The objectives described above are also pursued through the exploration of appropriate case studies.

Knowledge and understanding skills
The teaching aims to develop students' knowledge and understanding skills, such as:
• knowing and understanding what technologies are useful in monitoring tree systems for precision agronomic applications such as remote sensing and digital soil mapping to quantitatively estimate variables of agronomic interest in vegetation and soil;
• know and understand the digital techniques and technologies that can be used to analyze the spatial and temporal variability of the orchard;
• to know and understand the development and application of precision agronomic techniques and decision support systems for plant fruit systems.

Applied knowledge and understanding
The teaching will enable the application of knowledge and understanding, allowing the student to:
• know and use the main multispectral satellite systems suitable for precision agriculture through the use of cloud-based platforms for analyzing the temporal and spatial variability of fruit-growing plots;
• know and use techniques for estimating vegetation and soil biophysical variables from satellite data and through the use of proximal sensing for monitoring fruit crops;
• to know the techniques and technologies available for digital applications in the management of cultivation operations in the orchard, also exploring the opportunities for using drones and agribots for the automatic execution of cultivation operations.

Autonomy of judgement
Teaching will allow the development of autonomy of judgement at various levels, such as:
• hypothesize which soil and climate properties influence the spatial and temporal variability of fruit tree crops;
• propose the most suitable precision management agro-techniques for efficient and sustainable management of fruit tree crops.

Communication skills
Participation in the lectures and use of the teaching materials made available will facilitate the development and application of communication skills, such as:
• provide an exhaustive range of practical examples of the application of precision agronomic techniques to fruit tree crops;
• using an appropriate and up-to-date technical agronomic vocabulary in line with fruit growing 4.0.

Learning skills
Participating in lessons and making independent use of the material made available will facilitate the consolidation of one's learning skills, such as:
• activate a programme of continuous updating of one's knowledge;
• autonomously identify ways of acquiring information by consulting bibliographic databases at various levels (peer-reviewed journals, popular journals, conference proceedings, websites, etc.);
• identify and use the most useful sources of information for personal updating.

120464 - .

First Semester 8INF/01ita

Learning objectives

The objectives of the Artificial Intelligence Applications course are to provide students with the ability to use advanced statistical tools such as machine learning to understand, design and solve problems concerning the estimation of quantitative or qualitative variables.
Attendance at lessons and exercises, although optional is strongly recommended.
Knowledge and understanding
The course aims to develop in students knowledge and understanding skills, such as:
• know and understand what a machine learning problem is and when to use machine learning to solve a problem;
• know and understand the logic behind machine learning and the most common machine learning techniques;
• know and understand how to develop simple machine learning models and their training.

Applied knowledge and understanding
The course will allow students to apply knowledge and understanding, allowing for example to:
• divide problems into general categories;
• match problems with the most suitable algorithms to solve them;
• design and train machine learning algorithms that can estimate qualitative or quantitative variables based on structured and non-structured datasets.

Making judgements
The course will allow students to develop autonomy of judgment at various levels, such as:
• identify possible sources of uncertainty in the estimation of variables by machine learning (underfitting, overfitting, etc.);
• propose critical solutions to correct trends that undermine the value of the estimate.

Communication skills
Participating in the lessons and/or using the material made available independently will facilitate the development and application of communication skills, such as:
• provide a sufficient range of practical examples of application of artificial intelligence;
• use a suitable and up-to-date computer science technical vocabulary.

Learning skills
Participating in the lessons and/or independently using the material made available will facilitate the consolidation of one's learning skills, allowing for example to:
• activate a program of continuous education updating of one's knowledge;
• independently identify the ways to acquire information;
• identify and use the sources of information most useful to staff updating.

119427 - ADVANCED ENGLISH (C1)

Second Semester 3L-LIN/12ita

Learning objectives

Learning objectives

The minimum educational objectives of the course are aimed at enabling the student to effectively read and understand (reading-comprehension) texts in English such as scientific and/or popular articles, book chapters, etc., as well as to communicate with foreigners and dialogue, with particular reference to the contents of the master's degree course, with foreign interlocutors.

Knowledge and understanding

The student must demonstrate that he/she has acquired a level of knowledge and understanding of linguistic contents (reading, understanding and analysis of scientific texts, dialogue) of C1 level.

Applied knowledge and understanding

The student must demonstrate that he/she is able to apply the knowledge acquired and the understanding of the educational contents provided by confidently passing the final assessment test.

Autonomy of judgment

The student must demonstrate that he/she is able to critically and independently analyze the available teaching material, and also propose autonomous self-learning activities.

Communication skills

During the course, students must demonstrate good oral communication skills in English.

Learning skills

The student must demonstrate an ability to learn the teaching content at a level at least equal to C1.

119426 -

Second Semester 8ita
119515 - DRONES AND LAND SURVEY

Second Semester 6AGR/10ita

Learning objectives

Knowledge and Understanding
The course aims to provide students with the necessary knowledge to carry out a topographic survey using the most modern techniques: GPS/GNSS and Remotely Piloted Aircraft Systems (RPAS). The goal is to enable the acquisition of precise knowledge regarding both aerial and terrestrial unmanned surveying systems, applicable to individual and environmental surveying in the field of animal husbandry. Additionally, the course aims to ensure knowledge of the subject from the perspective of usage methods and directly applicable applications. Specifically, the satellite constellation, control systems, and ground user segments will be analyzed. The course will also cover the digital processing and representation of data acquired through surveying activities, with an in-depth focus on the software and processing techniques involved.

Applied Knowledge and Understanding
The course intends to help students acquire the knowledge and skills needed to implement and utilize aerial and terrestrial unmanned surveying systems in the agricultural sector and mountainous terrain. These systems have various applications, including individual and environmental surveying in animal husbandry.
Additionally, the course aims to promote the use of GIS tools and the application of global satellite positioning systems, satellite remote sensing, and the main types of ground receivers.

Autonomy in Judgment
The course also aims to ensure that students understand digital technologies and can apply them in various contexts, including business and regional levels, with particular reference to mountainous areas. It also fosters the acquisition of the necessary skills to communicate relevant information to other engineering professionals working in the field, aiding in the design of technologies related to surveying systems. This includes promoting the development of independent judgment through the cultivation of critical skills aimed at identifying technical and scientific issues related to the subject, evaluating complex surveying projects and flight plans, conducting bibliographic research on scientific, regulatory, and technical sources, and delving into social, professional, and ethical considerations associated with surveying activities. The course will thus address aspects related to the knowledge and use of surveying with RPAS (Remotely Piloted Aircraft Systems), focusing particularly on the regulatory framework, types of RPAS, and the planning of photogrammetric flights.

Communication Skills
The course also aims to enable students to develop specific skills through educational activities to ensure an adequate level of communication regarding ideas, problems, and solutions related to the technical and scientific training pertinent to digital surveying issues.

Learning skills
The course is also designed to help students develop the technological skills needed to ensure continuous updating of knowledge relevant to their professional or scientific activities. This involves consulting regulatory, legislative, technological, digital, methodological, and experimental innovation sources related to current surveying systems. After revisiting the basic concepts of topographic surveying, students will be provided with the necessary knowledge to ensure the correct use of the global positioning system, fostering an understanding of geostatistics, global satellite positioning systems, satellite remote sensing, and the main types of ground receivers.

120425 - .

Second Semester 6BIO/04ita

Learning objectives

Knowledge and ability to understand
The course aims to consolidate and expand the knowledge of the biology of plant organisms, with regard to ecophysiological aspects. Students will learn, in class and with originality, multidisciplinary approaches more related to genetics, molecular biology, biochemistry and plant physiology.

Applying knowledge and understanding
Students will acquire the ability to independently solve problems related to crop resilience, critically analysing the biochemical and physiological mechanisms that plants put in place to adapt to unfavourable environmental conditions and to defend themselves from pathogens.

Making judgement
Students will develop the ability to synthesize and integrate knowledge by making solid judgments.

Communication skills
Conclusions and recommendations will be communicated by students through the argumentation of the knowledge gained during the course and the motivations behind it, both to a specialized and non-specialist audience, in a clear and unambiguous way.

Learning skills
The notions and concepts acquired during the course will provide students with greater responsibility for further professional development.

120463 - . - 13- -

Learning objectives

The learning objectives of teaching Digital Applications in foothill arboriculture are to provide the student with the ability to use digital tools and technologies for monitoring analysis and management of fruit tree systems and for the application of precision agronomic techniques in the field with regard to fruit trees from the foothill environment.
The course also intends to provide students with the ability to identify the most appropriate level of digitization applicable to the different types of orchard farms, together with an in-depth exploration of the different plant shapes used in fruit tree systems, with the aim of calibrating the applications of fruit farming 4.0 to the type of planting and plant shapes used in the orchard. The objectives described above are also pursued through the exploration of appropriate case studies.

Knowledge and understanding skills
The teaching aims to develop students' knowledge and understanding skills, such as:
• knowing and understanding what technologies are useful in monitoring tree systems for precision agronomic applications such as remote sensing and digital soil mapping to quantitatively estimate variables of agronomic interest in vegetation and soil;
• know and understand the digital techniques and technologies that can be used to analyze the spatial and temporal variability of the orchard;
• to know and understand the development and application of precision agronomic techniques and decision support systems for plant fruit systems.

Applied knowledge and understanding
The teaching will enable the application of knowledge and understanding, allowing the student to:
• know and use the main multispectral satellite systems suitable for precision agriculture through the use of cloud-based platforms for analyzing the temporal and spatial variability of fruit-growing plots;
• know and use techniques for estimating vegetation and soil biophysical variables from satellite data and through the use of proximal sensing for monitoring fruit crops;
• to know the techniques and technologies available for digital applications in the management of cultivation operations in the orchard, also exploring the opportunities for using drones and agribots for the automatic execution of cultivation operations.

Autonomy of judgement
Teaching will allow the development of autonomy of judgement at various levels, such as:
• hypothesize which soil and climate properties influence the spatial and temporal variability of fruit tree crops;
• propose the most suitable precision management agro-techniques for efficient and sustainable management of fruit tree crops.

Communication skills
Participation in the lectures and use of the teaching materials made available will facilitate the development and application of communication skills, such as:
• provide an exhaustive range of practical examples of the application of precision agronomic techniques to fruit tree crops;
• using an appropriate and up-to-date technical agronomic vocabulary in line with fruit growing 4.0.

Learning skills
Participating in lessons and making independent use of the material made available will facilitate the consolidation of one's learning skills, such as:
• activate a programme of continuous updating of one's knowledge;
• autonomously identify ways of acquiring information by consulting bibliographic databases at various levels (peer-reviewed journals, popular journals, conference proceedings, websites, etc.);
• identify and use the most useful sources of information for personal updating.

MODULE IIFirst Semester7AGR/02ita

Learning objectives

To provide students with the ability to use digital tools and technologies for the monitoring, analysis and management of cropping systems and for the application of precision agronomic techniques for open field applications with particular regard to herbaceous cultivation systems

SUBJECTSEMESTERCFUSSDLANGUAGE
119416 - DIGITAL TECHNOLOGIES APPLIED TO GENETICS

First Semester 6AGR/07ita

Learning objectives

Knowledge and understanding
The course aims to provide the necessary knowledge for the evaluation of phenotypes and their genetic bases in order to learn the body's responses to different environmental situation and to be able to favor those most suited to specific needs. The basics of modern genetic analysis from sequencing to the evaluation of genomes and biodiversity will also be provided.

Applied knowledge and understanding
The course deals with genotypic and genomic characterization (morpho-bio-molecular markers; automation in field genotyping - NGS, DNA barcoding, genotyping by sequencing; population genetics; management of natural populations), phenotypic characterization (tolerance traits abiotic stress observation and parameterization; phenotyping of the individual, populations and communities; analysis of point and area data, from multispectral analysis to phenotype), from genotype to phenotype (gene regulation; phenotypic plasticity; epi-genetics), the exploitation of germplasm (characterization, enhancement and conservation of germplasm; general principles and application to case studies).

Making judgments
Know how to decide the best genetic evaluation and biodiversity conservation methodologies to use in different situations.

Communication skills
Acquire technical terminology to communicate information, ideas, problems and solutions clearly and in detail to the scientific and public community.

Learning skills
Develop learning skills necessary to undertake further studies with a high degree of autonomy.

119484 - DIGITAL MANAGEMENT OF FOREST AND WATER RESOURCES - 12- -

Learning objectives

The course aims to address the fundamental principles of sustainable forest management and the role of digital management in monitoring and analyzing forest as a support to the actions needed to achieve environmental sustainability objectives. After these premises, the course aims to develop skills in the management of forest geospatial data, including the collection, organization, manipulation and integration of data from different sources. Acquire knowledge of geomatics technologies used for the digital management of forest landscapes, including geographic information systems (GIS), remote sensing, GNSS and 3D modeling. Apply geomatics methods for the analysis and monitoring of forest consistency, including the assessment of forest composition and structure, tree species distribution and identification of habitats of community importance. Learn to use geospatial data and remote sensing techniques to assess the health status of forests, including the identification of insect infestations, forest diseases and fires.

Knowledge and understanding
The course aims to develop in students’ knowledge and understanding skills, such as:
• know and understand which technologies are useful for the analysis of forest systems for applications such as forest inventory;
• know and understand the techniques and technologies that can be used to analyze the spatial and temporal variability of forest ecosystems, by exploiting change detection and time series analysis based on the use of multispectral indices;
• know and understand the methods of development and application of forest geomatics techniques (precision forestry) for sustainable forest management.

Applied knowledge and understanding
The course will allow to apply knowledge and understanding, allowing the student to:
• know and use the main digital systems of proximal sensing for the inventory of forest resources and the acquisition of ground truth;
• know and use the main sensors on board satellite, aerial, drone and terrestrial platforms suitable for precision forestry;
• know and use cloud-based platforms for the analysis of the temporal and spatial variability of forest ecosystems;
• know and use the techniques for the implementation of forecasting models and spatially explicit estimation of the main attributes of forest ecosystems;
• know and use the techniques for mapping and estimating the severity of forest fires.

Making judgements
The course will allow to develop critical sense and the ability to independently formulate judgments at various levels, such as:
• hypothesize monitoring protocols and types of sensors to be used for the inventory of forest resources;
• identify the factors limiting forest growth and the main factors of forest degradation;
• propose effective digital data management for the purposes of forest restoration efforts and sustainable forest management.

Communication skills
The course aims at the development and application of communication skills, such as:
• having the ability to explain the knowledge acquired in a simple and exhaustive way even to non-expert audiences;
• being able to present original works and manuscripts using the Italian or foreign language in an appropriate and correct way;
• using an appropriate and updated technical forestry vocabulary.

Learning skills
The course aims to consolidate self-learning skills, allowing for example:
• to activate a program of continuous updating of one's knowledge;
• to independently identify the ways to acquire information;
• to identify and use the most useful and reliable sources of information and data for personal professional purpose;
• to participate profitably in upgrade courses, masters, seminars, etc.

MODULE IISecond Semester6AGR/05ita

Learning objectives

The course aims to address the fundamental principles of sustainable forest management and the role of digital management in monitoring and analyzing forest as a support to the actions needed to achieve environmental sustainability objectives. After these premises, the course aims to develop skills in the management of forest geospatial data, including the collection, organization, manipulation and integration of data from different sources. Acquire knowledge of geomatics technologies used for the digital management of forest landscapes, including geographic information systems (GIS), remote sensing, GNSS and 3D modeling. Apply geomatics methods for the analysis and monitoring of forest consistency, including the assessment of forest composition and structure, tree species distribution and identification of habitats of community importance. Learn to use geospatial data and remote sensing techniques to assess the health status of forests, including the identification of insect infestations, forest diseases and fires.

Knowledge and understanding
The course aims to develop in students’ knowledge and understanding skills, such as:
• know and understand which technologies are useful for the analysis of forest systems for applications such as forest inventory;
• know and understand the techniques and technologies that can be used to analyze the spatial and temporal variability of forest ecosystems, by exploiting change detection and time series analysis based on the use of multispectral indices;
• know and understand the methods of development and application of forest geomatics techniques (precision forestry) for sustainable forest management.

Applied knowledge and understanding
The course will allow to apply knowledge and understanding, allowing the student to:
• know and use the main digital systems of proximal sensing for the inventory of forest resources and the acquisition of ground truth;
• know and use the main sensors on board satellite, aerial, drone and terrestrial platforms suitable for precision forestry;
• know and use cloud-based platforms for the analysis of the temporal and spatial variability of forest ecosystems;
• know and use the techniques for the implementation of forecasting models and spatially explicit estimation of the main attributes of forest ecosystems;
• know and use the techniques for mapping and estimating the severity of forest fires.

Making judgements
The course will allow to develop critical sense and the ability to independently formulate judgments at various levels, such as:
• hypothesize monitoring protocols and types of sensors to be used for the inventory of forest resources;
• identify the factors limiting forest growth and the main factors of forest degradation;
• propose effective digital data management for the purposes of forest restoration efforts and sustainable forest management.

Communication skills
The course aims at the development and application of communication skills, such as:
• having the ability to explain the knowledge acquired in a simple and exhaustive way even to non-expert audiences;
• being able to present original works and manuscripts using the Italian or foreign language in an appropriate and correct way;
• using an appropriate and updated technical forestry vocabulary.

Learning skills
The course aims to consolidate self-learning skills, allowing for example:
• to activate a program of continuous updating of one's knowledge;
• to independently identify the ways to acquire information;
• to identify and use the most useful and reliable sources of information and data for personal professional purpose;
• to participate profitably in upgrade courses, masters, seminars, etc.

119428 - TRAINING

First Semester 2ita
119420 - ENERGY SUPPLIES

First Semester 6ING-IND/08ita

Learning objectives

The course aims to describe energy sources, their conversion and transformation, their use and rationalization. Once the primary and secondary forms of energy have been introduced, attention is focused on conservation principles applied to energy systems. Then conventional steam power plants are studied, followed by gas turbines, and internal and external combustion engines used as energy systems. Renewable power plants and direct conversion power plants are discussed. The final and rational use of energy, recovery and energy saving are also studied. Furthermore, the course will allow the acquisition of basic multidisciplinary skills to design, build and use economic analysis models of energy plants and systems so as to be able to evaluate the performance and applications of different energy systems, being also able to compare the specificity of each system and choose the best coupling solution between a given energy end use and the available energy conversion systems.
The objectives of the course according to the Dublin descriptors are as follows:

Knowledge and understanding
Understand the fundamental principles of energetics from a technical and economic point of view.

Applied knowledge and understanding
Through the development of case studies, the student will be encouraged to develop an application capacity on the methodologies and techniques acquired.

Making judgements
Being able to apply the acquired knowledge to solve simple and non-simple problems thanks to the multidisciplinary knowledge obtained.

Communication skills
Being able to explain, both in written and oral form, the problem and possible solutions to simple situations concerning energy supply.

Learning skills
Knowing how to collect information from textbooks and other materials for the autonomous solution of problems related to energy supply.

119467 - ENVIRONMENTAL QUALITY MONITORING

Second Semester 6AGR/13ita

Learning objectives

The course aims to provide students with knowledge about the main natural and anthropogenic factors capable of influencing environmental balances in a context of climate change and sustainable development. The course will delve into the environmental dynamics that define the natural balances between soil, water, and air, as well as the indicators used to assess their quality.

Knowledge and understanding
The course aims to develop students' knowledge and understanding, particularly regarding environmental quality monitoring. This includes understanding the techniques for monitoring environmental quality by first deepening their knowledge of the quality characteristics of soil, air, and water systems. A fundamental aspect is understanding the limits of application or interpretation of various quality indicators in relation to the reference system or environmental situation in which they are applied. The course also intends to provide adequate knowledge of the nutrient dynamics in the soil (nitrogen, phosphorus, and sulfur cycles) and the organic matter cycle. Additionally, the course will explore the effects of significant pollutants, such as heavy metals, the environmental issues related to their presence in the environment, and remediation strategies.

Applied knowledge and understanding
The course enables the application of knowledge by developing practical laboratory skills and the ability to derive information from laboratory activities to support and integrate theoretical lessons.

Making judgements
The course fosters the development of students’ autonomy in assessing soil, water, and air quality, and integrating various systems to define environmental quality. This is achieved through understanding the fundamental chemical and physical characteristics of soil, air, and water, as well as the natural and anthropogenic factors that have caused imbalances in these characteristics, leading to environmental degradation and quality loss.

Communication skills
The course provides the ability to present acquired knowledge using appropriate language and technical terms.

Learning skills
To improve their learning abilities, it is essential for students to attend lessons and independently utilize the provided materials. This approach supports continuous knowledge updating, allowing students to identify the most effective strategies for gathering information. Furthermore, it is crucial to develop the ability to independently update one's knowledge by conducting keyword searches and consulting texts, bibliographic databases, and significant scientific publications at both national and international levels.

119419 - DIGITAL TOURISM MANAGEMENT

Second Semester 6SPS/10ita

Learning objectives

The aim of the Digital Tourism Management course is to accompany the class on a journey of knowledge of the state of the art of digital strategies in the tourism sector. A particular focus will be on digital strategies for incoming tourism in mountain environments.

Knowledge and understanding
The course aims to develop in students knowledge and understanding regarding:
• the historical evolution of the main tourism practices;
• the new trends and practices of digital tourism;
• the opportunities offered by the PNRR for the development of tourism 4.0;
• tourism promotion strategies in the digital age;
• tourism as a driving force for the relaunch of internal and mountain areas.

Ability to apply knowledge and understanding
The course will allow students to use the knowledge acquired to:
• describe the dynamics that characterize the tourism universe at local, national and international level;
• hypothesize digital solutions suitable for the mountain environment;
• design and implement an effective tourism communication campaign through digital tools.

Autonomy of judgment
Students must be able to independently evaluate:
• the strengths and weaknesses of a constantly evolving world;
• any critical issues in governance in terms of digitalization;
• the relationships and interactions between the issues of competitiveness and sustainability.

Communication skills
The course will facilitate the development and application of communication skills, such as:
• the ability to present a final report to an external audience;
• the ability to use appropriate and up-to-date technical vocabulary;
• the ability to work in a team.

Learning skills
At the end of the course, students will have consolidated their learning skills, learning to:
• independently identify ways to acquire information;
• identify and use the most useful sources of information for personal development.

119429 - FINAL TEST

Second Semester 20ita
119484 - DIGITAL MANAGEMENT OF FOREST AND WATER RESOURCES - 12- -

Learning objectives

The course aims to address the fundamental principles of sustainable forest management and the role of digital management in monitoring and analyzing forest as a support to the actions needed to achieve environmental sustainability objectives. After these premises, the course aims to develop skills in the management of forest geospatial data, including the collection, organization, manipulation and integration of data from different sources. Acquire knowledge of geomatics technologies used for the digital management of forest landscapes, including geographic information systems (GIS), remote sensing, GNSS and 3D modeling. Apply geomatics methods for the analysis and monitoring of forest consistency, including the assessment of forest composition and structure, tree species distribution and identification of habitats of community importance. Learn to use geospatial data and remote sensing techniques to assess the health status of forests, including the identification of insect infestations, forest diseases and fires.

Knowledge and understanding
The course aims to develop in students’ knowledge and understanding skills, such as:
• know and understand which technologies are useful for the analysis of forest systems for applications such as forest inventory;
• know and understand the techniques and technologies that can be used to analyze the spatial and temporal variability of forest ecosystems, by exploiting change detection and time series analysis based on the use of multispectral indices;
• know and understand the methods of development and application of forest geomatics techniques (precision forestry) for sustainable forest management.

Applied knowledge and understanding
The course will allow to apply knowledge and understanding, allowing the student to:
• know and use the main digital systems of proximal sensing for the inventory of forest resources and the acquisition of ground truth;
• know and use the main sensors on board satellite, aerial, drone and terrestrial platforms suitable for precision forestry;
• know and use cloud-based platforms for the analysis of the temporal and spatial variability of forest ecosystems;
• know and use the techniques for the implementation of forecasting models and spatially explicit estimation of the main attributes of forest ecosystems;
• know and use the techniques for mapping and estimating the severity of forest fires.

Making judgements
The course will allow to develop critical sense and the ability to independently formulate judgments at various levels, such as:
• hypothesize monitoring protocols and types of sensors to be used for the inventory of forest resources;
• identify the factors limiting forest growth and the main factors of forest degradation;
• propose effective digital data management for the purposes of forest restoration efforts and sustainable forest management.

Communication skills
The course aims at the development and application of communication skills, such as:
• having the ability to explain the knowledge acquired in a simple and exhaustive way even to non-expert audiences;
• being able to present original works and manuscripts using the Italian or foreign language in an appropriate and correct way;
• using an appropriate and updated technical forestry vocabulary.

Learning skills
The course aims to consolidate self-learning skills, allowing for example:
• to activate a program of continuous updating of one's knowledge;
• to independently identify the ways to acquire information;
• to identify and use the most useful and reliable sources of information and data for personal professional purpose;
• to participate profitably in upgrade courses, masters, seminars, etc.

MODULE IISecond Semester6AGR/08ita

Learning objectives

The course covers the main aspects of digital water resource management at the catchment scale. The course aims to train the learner on the following topics:
• regulatory aspects of water resources management;
• the use of hydrological modelling software;
• the use of hydraulic modelling software to assess the hydraulic characteristics of a free-flowing stream.

Knowledge and understanding
The course aims to develop students' knowledge and understanding skills, such as:
• knowledge and understanding skills in a field of study at a level that is characterised by the use of advanced textbooks and also includes knowledge of some cutting-edge topics in the field of watershed managment;
• ability to understand and hydrological data.

Applied knowledge and understanding
The course will enable them to apply knowledge by demonstrating adequate understanding, enabling them, for example:
• to apply their knowledge and understanding in a way that demonstrates a professional approach to their work, as well as adequate skills to both devise and support arguments to solve problems in the field of watershed managment;
• ability to collect and analyse hydrological data.

Making judgements
The course will allow the development of independent judgement at various levels, such as
• hypothesising which causes most influence the occurrence of hydrogeological instability phenomena using one-dimensional hydraulic modelling software;
• propose solutions for the mitigation of hydrogeological instability phenomena using one-dimensional hydraulic modelling software.

Communication skills
Attending lectures and/or making independent use of the material provided will facilitate the development and application of communication skills, such as:
• ability to communicate information, ideas, problems and solutions, on the topics covered, to specialist and non-specialist people;
• use an appropriate and up-to-date technical vocabulary in the field of hydrological-hydraulic modelling.

Learning skills
Attending lectures and/or making independent use of the material provided will facilitate the consolidation of one's learning skills, enabling one to, for example:
• activate a programme of continuous updating of one's knowledge;
• autonomously identify ways of acquiring information;
• identify and use the most useful sources of information for personal updating.
This learning capacity will be fundamental for undertaking subsequent studies with a high degree of autonomy.

CHOICE GROUPSYEAR/SEMESTERCFUSSDLANGUAGE